A phosphorus-31 nuclear magnetic resonance study of the metabolic, contractile, and ionic consequences of induced calcium alterations in the isovolumic rat heart.

نویسندگان

  • J A Hoerter
  • M V Miceli
  • D G Renlund
  • W E Jacobus
  • G Gerstenblith
  • E G Lakatta
چکیده

Isolated adult rat hearts perfused in an isovolumic mode were used to study the effects of sodium-potassium pump inhibition and sodium-calcium exchange alterations on the tissue content of adenosine triphosphate, phosphocreatine, inorganic phosphate, and intracellular pH, all measured by phosphorus-31 nuclear magnetic resonance spectroscopy. Rates of oxygen consumption, contractile function, and the cell contents of calcium, sodium, and potassium also were determined. The inhibition of sodium-potassium adenosine triphosphatase, either by the reduction in perfusate potassium from 5.9 to 1 millimolar or less, or by the addition of 10(-4) molar ouabain, transiently increased systolic pressure. This was followed by a decrease in systolic pressure, an increase in diastolic pressure, and eventual inexcitability. This contractile profile was accompanied by a persistent increase in oxygen consumption, a monotonic decline in cellular adenosine triphosphate and phosphocreatine content, the development of marked intracellular acidosis, a gain in cell sodium and calcium content, and a reduction in cell potassium. Quite similar metabolic changes were also observed when cell calcium was increased after a reduction in perfusate sodium. These metabolic and contractile effects could be prevented or reversed by decreasing perfusate calcium. The results emphasize the profound role of calcium in modulating cell oxygen consumption, energy balance, pH, excitability, and force production. These data are discussed in light of changes in the myocardial energy supply/demand balance, as well as from the viewpoint of the known competition between mechanisms for mitochondrial calcium transport vs. high-energy phosphate production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study.

Hypothermic potassium cardioplegia is now commonly used to protect the myocardium during surgically induced ischemia. Because the potassium-related membrane depolarization has been shown to increase calcium influx, we undertook this study to define the effects of varying the calcium content in hyperkalemic perfusates and the effects of using magnesium instead of or in addition to potassium as t...

متن کامل

Glycolytic Inhibition and Calcium Overload as Consequences

Free radicals have been implicated in the pathogenesis of reperfusion injury, but it is unclear how they exert their deleterious effects on cellular metabolism. Several lines of indirect evidence suggest that free radicals elevate intracellular Ca2" concentration ([Ca2"]) and inhibit glycolysis as part of their mechanism of injury. We tested these ideas directly in hearts subjected to hydroxyl ...

متن کامل

Low Ca2+ reperfusion and enhanced susceptibility of the postischemic heart to the calcium paradox.

This study was designed to define the effect of postischemic low Ca2+ perfusion on recovery of high-energy phosphates, intracellular pH, and contractile function in isolated rat hearts. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to follow creatine phosphate, adenosine triphosphate, intracellular inorganic phosphate, and intracellular pH during control perfusion (15 minutes),...

متن کامل

Low Ca Reperfusion and Enhanced Susceptibility of the Postischemic Heart to the Calcium Paradox

This study was designed to define the effect of postischemic low Ca perfusion on recovery of high-energy phosphates, intraceUular pH, and contractile function in isolated rat hearts. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to follow creatine phosphate, adenosine triphosphate, intraceUular inorganic phosphate, and intraceUular pH during control perfusion (15 minutes), tota...

متن کامل

Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat hearts.

Myocardial recovery after hypoxia may be determined not only by the extent of metabolic depression during the hypoxic period but also by changes in cation contents as well. Calcium overload during reoxygenation, mediated in part by Na-Ca exchange and supported by the rise in cell sodium during hypoxia, may be one factor. The effects of amiloride (0.1 mM), a diuretic that inhibits Na(+)-H+ and N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 1986